terça-feira, 21 de novembro de 2017

Revisão Matemática

Matemática e suas Tecnologias Livro do Estudante Ensino Médio

A Matemática: uma construção da humanidade A Matemática e o dia-a-dia As condições de vida da humanidade se modificaram ao longo do tempo, com o desenvolvimento da agricultura, do comércio, da indústria, do conhecimento e da tecnologia . E através das conseqüências do avanço em todas essas áreas. Apesar de o homem não ter registrado o que fazia e pensava no início de sua história, ele precisava resolver problemas de seu dia-a-dia, ligados à sua subsistência. Ao buscar soluções para eles, o conhecimento matemático começou a ser construído.

A Matemática e a linguagem Tanto o pescador como o caçador pensaram de um modo até bastante sofisticado. Entretanto, talvez a estratégia que utilizaram para resolver a questão da troca já não fosse tão eficiente se tivessem que decidir quantos peixes trocar por 560 aves! Com o correr do tempo, o homem passou a produzir mais e a ter um estoque do que produzia (superávit), além da necessidade do consumo próprio e de seu grupo. Com isso, as idéias e técnicas matemáticas foram se aperfeiçoando, para poder resolver os problemas que envolviam grandes quantidades, por exemplo. É bem possível que você tenha resolvido o problema dos peixes de um modo mais rápido, como por exemplo: Esses símbolos que atualmente combinamos e usamos de um modo conveniente para registrar a resolução do problema dos peixes fazem parte de uma linguagem escrita que foi sendo construída, à medida que as idéias e conceitos matemáticos foram sendo descobertos, elaborados e aplicados pelo homem em outras situações: é a linguagem matemática. Essa linguagem, quando é escrita, utiliza símbolos próprios e universais, o que permite uma comunicação que ultrapassa fronteiras das diversas línguas. Entretanto, quando nos comunicamos oralmente, utilizando essa linguagem, lançamos mão da língua materna. Veja um exemplo: Um freguês de uma padaria compra, todos os dias, leite a R$1,10 o litro e alguns pãezinhos a R$ 0,20 cada. Como se pode representar a despesa dessa pessoa num dia? A situação acima, descrita em nossa língua materna, pode ser registrada por meio da linguagem matemática, que favorece a representação da despesa desse freguês para qualquer quantidade de pães que ele compre. Podemos representar por n o número de pães e por f(n) (lê-se “f de n”) a despesa. Assim, a despesa pode ser representada pela igualdade: f (n) = 1,10 + 0,20 . n Despesa total Despesa com o leite Despesa com os pães Figura 3 11 . 3 = 33 ou 22 2 00 11 2 3 22 x = então x = = 33 3 . 22 2 Matemática e suas Tecnologias Ensino Médio 14 2 3 Desenvolvendo competências Você e as placas de trânsito Algumas placas de trânsito que você encontra nas ruas e estradas utilizam uma “linguagem” simbólica, muitas vezes impregnada de idéias matemáticas. Observe as placas ao lado. a) O que elas significam? b) Que idéia matemática cada uma delas utiliza?

A todo momento, podemos constatar nos meios de comunicação (televisão, jornais, revistas, internet, folhetos, livros etc.), a presença dessa “linguagem”. Uma pessoa que não a domina, não é Pense um pouco sobre os gráficos acima: Os gráficos publicados pelo jornal fizeram parte de matéria sobre o “caso cracolândia”, ocorrido na capaz de compreender as informações apresentadas, o que poderá torná-la incapaz de participar de maneira integral de uma vida em sociedade cidade de São Paulo, no final de 2001, e dizem respeito às ações promovidas pela Corregedoria da polícia civil e à situação de seus funcionários.

Você já viu que o desenvolvimento da Matemática se deve em grande parte à busca de soluções para problemas que a humanidade tem enfrentado em seu dia-a-dia. Apenas para dar alguns exemplos: • Que chance tenho em ter meu bilhete sorteado numa loteria de números? • Como fixar as ripas de meu portão? • Quantas estampas diferentes posso obter nos tecidos da tecelagem onde trabalho, se o fundo pode ser ou azul ou amarelo e o desenho pode ser de bolinhas brancas ou de listras pretas ou, ainda, xadrez vermelho? Questões semelhantes a essa fizeram o homem pensar nos fenômenos probabilísticos, em questões geométricas, e nos problemas de contagem, respectivamente. Além desses campos específicos da Matemática aos quais eles se referem, outros mais foram desenvolvidos a partir de problemas que envolviam números, medidas, álgebra, ligados à realidade da humanidade. Entretanto, os outros campos do conhecimento também têm solicitado respostas da Matemática para solucionar seus problemas específicos, contribuindo indiretamente para seu desenvolvimento. Para citar um exemplo que mostra a Matemática sendo utilizada em outro campo do conhecimento, vamos focalizar nosso olhar na Trigonometria, ramo da Matemática que, até por volta do século XVII, desenvolveu-se em decorrência de uma ligação estreita entre a teoria e a prática. No início de sua criação, a Trigonometria era um campo da Matemática no qual os ângulos de um triângulo e as medidas de seus lados eram relacionados. As razões trigonométricas apareceram inicialmente por necessidades da Astronomia, da Agrimensura e da navegação. Posteriormente, por volta dos séculos XVI e XVII, a Trigonometria esteve a serviço da Física para descrever e explicar fenômenos periódicos, como por exemplo: • o movimento periódico dos planetas, estudado por Kepler. • o movimento periódico dos pêndulos, estudado por Galileu. • a propagação do som em forma de ondas, estudada por Newton. • a propagação da luz em forma de ondas, estudada por Huyghens. • a vibração de uma corda de violino, estudada por Mersenne.

Razões Trigonométricas

As razões trigonométricas já eram utilizadas pelos egípcios para resolver problemas de Arquitetura, por ocasião das construções das pirâmides. Para manter constante a inclinação das paredes das pirâmides durante a construção, eles mantinham constante o quociente do “afastamento horizontal” pelo “afastamento vertical”, que eram medidos com unidades diferentes.

Já no final do século XVII, com o início do desenvolvimento do conceito de Função, o estudo da Trigonometria se ampliou para um campo mais abstrato, desligando-se assim das aplicações práticas. Figura 6 – Onde a, b e c são as medidas dos catetos e da hipotenusa desse triângulo retângulo; a e b seus ângulos agudos; e sen (seno), cos (co-seno) e tg (tangente) são razões entre medidas dos lados desse triângulo, como estão descritas acima. h1 h2 h3 v1 v2 v3 === ... = c (constante) As razões trigonométricas já eram utilizadas pelos egípcios para resolver problemas de Arquitetura, por ocasião das construções das pirâmides.

Para manter constante a inclinação das paredes das pirâmides durante a construção, eles mantinham constante o quociente do “afastamento horizontal” pelo “afastamento vertical”, que eram medidos com unidades diferentes.

Atualmente, as razões trigonométricas num triângulo retângulo são apresentadas sempre a mesma inclinação. Ora, o quociente entre as medidas é nada mais, nada menos, do que uma razão trigonométrica, conhecida hoje por cotangente do ângulo de inclinação da parede com o chão. Hoje em dia mede-se a inclinação de uma reta por uma razão entre segmentos verticais e horizontais (tangente do ângulo de inclinação), razão essa inversa da utilizada pelos egípcios para resolverem problemas arquitetônicos.

A Matemática e suas questões internas Quantas vezes você já deve ter feito a mesma pergunta que aparece na Figura 18, não é mesmo? Muitas vezes aprendemos conceitos matemáticos que, à primeira vista, nada têm a ver com a realidade em que vivemos. Posteriormente, percebemos que eles serviram para construirmos novos conceitos e idéias matemáticas que têm grande aplicação em nossa vida. Um exemplo interessante é o dos números complexos. É muito comum entrarmos em contato com esse tipo de número por meio de problemas que envolvem raiz quadrada de número negativo. Veja um problema famoso a seguir: Descubra dois números cuja soma é 10 e cujo produto é 40. Esse problema foi objeto de estudo do matemático italiano Cardano, em 1545, que o considerou “manifestamente impossível, mas mesmo assim vamos operar”. A equação do segundo grau já era conhecida no tempo de Cardano: ax2 + bx + c = 0 e a fórmula que a resolve também: onde a, b e c são números reais. Cardano concluiu que a equação que resolvia esse problema é x2 –10 x + 40 = 0 e que eram soluções do problema. Entretanto considerou essas expressões inúteis, pois envolviam números para os quais ainda não tinha sido dado nenhum significado: a raiz quadrada de número negativo. Nesse tempo, Bombelli, outro matemático italiano, resolveu operar com esses números, mesmo sem dar a eles um significado, imitando o procedimento que utilizava para operar com números reais. Bombelli confirma, por exemplo, que a soma e o produto dos números e soluções do problema inicial são 10 e 40, respectivamente. Ele operou com esses números usando as mesmas regras e propriedades dos números reais que conhecia.

Usando a Matemática para modificar o mundo A todo momento convivemos com uma grande quantidade de objetos, fatos e informações de procedências e naturezas diversas. Por isso, precisamos compreendê-los, analisá-los, relacioná-los e, muitas vezes modificá-los, para tornar melhor a realidade em que vivemos.

Arrumar os objetos no armário demanda de você uma habilidade em ocupar o espaço de modo conveniente para que todos os objetos caibam. Mas não só isso. É possível que você queira colocar na prateleira de cima os objetos que usa para escrever (lápis, caderno e livro) e na de baixo os que não utiliza para esse fim (relógio, tesoura, caixinhas). Isso mesmo, você classifica os objetos de acordo com o critério que mais lhe interessa. Já a questão do lixo é mais complexa, pois sua solução não depende apenas de você! Que tal uma campanha de conscientização entre as pessoas que moram no seu quarteirão? Como fazer isso? Seria bom fazer uma coleta seletiva? As pessoas sabem o que é isso?

Afinal, o que a Matemática tem a ver com o lixo? Ora, uma campanha de conscientização sobre a coleta do lixo pode ser feita com as pessoas que moram em seu quarteirão. Ela pode ser desenvolvida em várias etapas, como, por exemplo: Um grupo de vizinhos interessados em solucionar o problema pode se organizar para fazer essa campanha. Fazer um levantamento: • do tipo de lixo que é jogado nas ruas (observando as ruas todos os dias, durante um certo período estipulado pela equipe, recolhendo e anotando o lixo encontrado: papéis, casca de frutas, embalagens, garrafas etc). Para fazer essa coleta, o grupo de vizinhos deve se munir de luvas de borracha, sacos de lixo de 20 litros marcados com cores diferentes (azul Usando a Matemática para modificar o mundo A todo momento convivemos com uma grande quantidade de objetos, fatos e informações de procedências e naturezas diversas. Por isso, precisamos compreendê-los, analisá-los, relacioná-los e, muitas vezes modificá-los, para tornar melhor a realidade em que vivemos. Você pode notar que essas três situações são de caráter muito diferente. Arrumar os objetos no armário demanda de você uma habilidade em ocupar o espaço de modo conveniente para que todos os objetos caibam. Mas não só isso. É possível que você queira colocar na prateleira de cima os objetos que usa para escrever (lápis, caderno e livro) e na de baixo os que não utiliza para esse fim (relógio, tesoura, caixinhas). Isso mesmo, você classifica os objetos de acordo com o critério que mais lhe interessa. Já a questão do lixo é mais complexa, pois sua solução não depende apenas de você! Que tal uma campanha de conscientização entre as pessoas que moram no seu quarteirão? Como fazer isso? Seria bom fazer uma coleta seletiva? As pessoas sabem o que é isso? Os exemplos são tantos, que tropeçamos neles em nosso dia-a-dia, desde os mais simples, até os mais complexos: Figura 20 Figura 21 Figura 22 Capítulo I — A Matemática: uma construção da humanidade 27 para papel; verde para vidro; amarelo para latas; vermelho para plásticos; branco para lixo orgânico). • de como é feita a coleta de lixo nesse quarteirão (por caminhão coletor, por cada morador que queima seu lixo ou leva-o para um depósito comunitário etc.); • sobre o conhecimento que as pessoas têm sobre coleta seletiva e se praticam a coleta seletiva; Papel Vidro Latas de bebida Orgânico (restos de alimentos, folhas, animais mortos etc) Plástico 2kg 1kg 3kg 3kg Sarjeta Portas de casas Sarjeta, calçadas Sarjeta, calçadas, rua porta de casa Tipo de lixo Quantidade Local 1kg Sarjeta, esquinas Conhece Não conhece 10 1 15 64 Coleta seletiva de lixo Pratica Não pratica papel 34 12 44 vidro 2 0 88 lata 24 15 51 orgânico 13 8 69 plástico 6 10 74 Tipo de lixo Em relação ao hábito de jogar lixo na rua, a Tabela 1 apresenta o nº de moradores em cada situação: Em relação ao conhecimento e à prática da coleta seletiva de lixo, a Tabela 2 apresenta o nº de moradores em cada situação: Em relação ao tipo de lixo e à quantidade encontrados nas ruas durante um certo período (por exemplo, 1 semana): Tabela 1 Tabela 2 Tabela 3 • sobre os insetos mais freqüentes nas casas desse quarteirão e na parte externa às moradias; O grupo de vizinhos poderá encontrar outros itens que considerar mais convenientes. De posse desses dados, o grupo poderá arrumá-los em tabelas, poderá também confeccionar gráficos para a conscientização dos moradores do quarteirão.

A elaboração das tabelas favorecerá: • a observação de semelhanças e diferenças entre os materiais coletados e, portanto, favorecerá os processos de classificação para a realização de coleta seletiva. • a tabulação e análise de dados. Na coleta encontrou-se um número muito maior de latas do que garrafas de vidro. A que se deve esse fato? Na pesquisa, percebeu-se que o hábito de jogar papel e latinhas de refrigerante ou cerveja ainda é muito forte entre os moradores desse quarteirão. O que se poderia fazer a respeito? • os cálculos que por ventura devam ser feitos para, por exemplo, fazer previsões: se cada garrafa coletada pesa em média 300g e cada lata 50g, quantas garrafas e quantas latas foram coletadas na semana? Se os sacos de lixo utilizados na coleta suportam em média 20kg, de quantos sacos vamos precisar para a próxima semana de coleta? • a observação de regularidades. A tabela anterior mostra que é na sarjeta que se encontra a maior diversidade de lixo. • a verificação de quantos moradores estão envolvidos, direta ou indiretamente, na coleta de lixo do quarteirão em questão: na primeira tabela é fácil perceber que são 90 essas pessoas. • a previsão sobre as medidas que deverão ser tomadas para conscientizar as pessoas que não conhecem ou não praticam a coleta seletiva (ao todo 80 moradores do quarteirão). Essas medidas podem ser de vários tipos: folhetos explicativos, reuniões com os moradores do quarteirão, visitas do grupo de pesquisa a cada casa do quarteirão para explicar sobre a coleta de lixo etc. • a confecção de gráficos que possam, por meio do impacto visual, mostrar aos moradores do quarteirão o problema do lixo de forma imediata. Um cartaz como o seguinte (Figura 23) nos mostra que os moradores do quarteirão precisam ser informados sobre o que é a coleta seletiva e suas vantagens. Para confeccionar um gráfico desse tipo (gráfico de setores), você precisa mobilizar conhecimentos sobre: • ângulo, ângulo central. • setor circular. • proporcionalidade (entre ângulo central do setor e o número de moradores que não conhecem ou não praticam coleta seletiva do lixo).

Lógica e argumentação: da prática à Matemática Argumentação Você já pensou no que existe em comum entre uma propaganda de certo produto na televisão, um artigo do editorial de um jornal e um debate entre dois políticos? Essas situações podem parecer bem diferentes, mas, se você analisar com cuidado, verá que, nos três casos, basicamente, tenta-se convencer uma ou mais pessoas de determinada idéia ou teoria. Os criadores do comercial procuram convencer o público de que aquele produto é melhor do que o de seus concorrentes. O jornalista que escreve um artigo defende seu ponto de vista sobre um acontecimento do dia anterior e procura convencer os leitores de que suas idéias são as mais corretas. Já cada um dos políticos tenta mostrar aos eleitores que possui melhores condições de ocupar determinado cargo público do que seu adversário. Mas como convencer alguém, ou nós mesmos, de que determinada idéia é, de fato, correta? É necessário que sejam apresentados fatos que justifiquem aquela idéia. Esses fatos são chamados de argumentos. Eles devem ser bem claros, ter uma relação lógica entre si, de tal maneira que a idéia considerada seja uma conseqüência natural dos argumentos apresentados. Nem sempre, porém, isso ocorre. Muitas vezes, a argumentação não é feita de modo consistente e o resultado é que aquela idéia acaba não sendo aceita pelas outras pessoas.

O sistema numérico Muitos séculos se passaram até que os hindus desenvolvessem o sistema de numeração decimal. Por não haver muitos documentos sobre a Matemática conhecida na Antigüidade, é impossível saber, com exatidão, quando isso aconteceu. Estima-se ter sido por volta do século V d.C. Os algarismos: 0; 1; 2; 3; 4; 5; 6; 7; 8 e 9 escolhidos para compor o sistema de numeração decimal e posicional foram por muito tempo denominados erroneamente algarismos arábicos, por terem sido apresentados pelos árabes. Por volta do século VII, ao entrarem em contato com a cultura hindu e motivados pela simplicidade e praticidade do sistema de numeração encontrado, tornaram-se seus divulgadores em todo o Oriente. Assim, mais tarde, esses algarismos passaram a ser conhecidos como hindu–arábicos. Em toda a Europa, durante muitos séculos, o sistema numérico usado era o romano e, apesar da simplicidade do sistema hindu-arábico, houve muita resistência à sua adesão, que só aconteceu efetivamente no século XVI. Outro fato historicamente interessante foi a origem do número zero. Não há consenso entre os historiadores sobre a invenção do zero, atribuída tanto aos povos da Mesopotâmia quanto aos árabes, hindus e chineses. Arqueólogos identificaram um símbolo para esse número em tábuas de escrita cuneiforme de 300 a.C., feitas na Mesopotâmia, numa época em que a região era dominada pelos persas. A invenção do zero aumentou a precisão de todos os cálculos e trouxe um grande desenvolvimento para a aritmética e a astronomia. O sistema de numeração hindu–arábico é o que utilizamos. Os números fazem parte efetiva do nosso cotidiano. Estão em toda parte, nos cercam. Precisamos deles. Abrimos o jornal e nos deparamos com notícias repletas de números. Através deles nos expressamos diariamente. Você já deve ter ouvido frases como estas... • “Meu tapete mede 2 metros por 3 metros.” • “O maior vírus conhecido mede 0,00025 cm.” • “A parte correspondente a do meu salário é gasta com despesas mensais fixas.” • “A catedral fica no marco zero da cidade.” • “O diâmetro de uma molécula grande é 0,000017 cm.” • “A temperatura em Nova York era de – 8º Celsius, enquanto que, no Rio de Janeiro, fazia 30ºC à sombra.” • “A cidade Vila Feliz fica no quilômetro 122 da rodovia João Paulo.” • “O número encontrado foi 0,3111...” • “Para calcular o comprimento da circunferência, basta multiplicar o diâmetro por π, cujo valor é aproximadamente 3,141592.” • “O resultado foi 0,333....” • “Era um número diferente: 0,10110111..” • “Minha casa fica no número 122 dessa rua.” • “Pedro conseguiu ser classificado em 1º lugar no vestibular.“ • “Quando dividi 12 por 33, encontrei como resultado 0,1212...” Capítulo III — Convivendo com os números 67 • ”Um freezer congela à temperatura de –18° Celsius.” • “Viajamos à velocidade média de 80 quilômetros por hora.” • “O cano mede de polegadas.” • ”Um pão de queijo custa R$ 0,80.” • “A caixa d’água tem 10.000 litros de capacidade.” • “Verificamos um resultado de – 0,02%.” Observe na Figura 1 como os números são escritos de modos diferentes. Quantas vezes temos de carregar uma sacola com várias coisas pesadas e nos perguntamos: Quantos quilos estarei carregando? Aí começamos a pensar: São dois quilos e meio de feijão; um quilo e trezentos de carne; um quilo e meio de farinha e meio quilo de sal. Calcule o peso dessa sacola. Você poderá fazer esse cálculo de vários modos. • Um deles seria: primeiro, juntar os quilos inteiros, 2kg de feijão, mais 1kg de carne, mais 1kg de farinha, o que resulta em 4kg. Depois, juntar os meios quilos: 0,5kg de feijão, mais 0,5kg de farinha, mais 0,5kg de sal, o que resulta em 1,5kg. Juntando os 4kg com 1,5kg, são 5,5kg. E, por fim, juntar os 300 gramas de carne, o que resulta em 5kg e 800 gramas, que pode ser escrito como 5,8kg. • Outro modo seria pensar que: dois quilos e meio de feijão são 2,5kg; um quilo e trezentos de carne são 1,3kg; um quilo e meio de farinha são 1,5kg; meio quilo de sal são 0,5kg. Calculando a soma, teremos: 2, 5 1, 3 1, 5 + 0, 5 5, 8 Veja que, nos dois modos de solução, os números que usamos foram representados com vírgula. Esses não são naturais nem inteiros. Podem ser chamados de racionais e também de números reais. São conhecidos como decimais e podem ser escritos em forma de uma fração com denominador 10, 100, 1.000 etc. 2,5 = 0,48 = 1,245 = Você vai notar que a escrita de números, às vezes, usa a vírgula, outras, a forma de fração, como o . E outras, o sinal negativo, como o -8, que é um número negativo. No dia-a-dia, você encontra várias situações envolvendo esses números. Veja algumas dessas situações e os problemas propostos. As respostas que você não encontrar no próprio texto estarão no final do capítulo. Vivemos calculando, fazendo estimativas e pensando em soluções envolvendo números. Por exemplo: Você está trabalhando na barraca de refrigerante da quermesse. No início da festa, havia 400 latas de refrigerantes e você gostaria de saber quantas vendeu. Para calcular essa quantidade, é necessário contar as latas que sobraram e depois encontrar a diferença entre essa quantidade que sobrou e 400. Os números usados para resolver esse problema são chamados de números naturais, mas podem também ser chamados de inteiros, racionais ou, ainda, números reais. Figura 1 Matemática e suas Tecnologias Ensino Médio 68 Observe que o número de casas decimais (algarismos depois da vírgula) é igual ao número de zeros do denominador. As frações surgiram, há muitos anos atrás, com a necessidade de medir quantidades não inteiras.

Números negativos Além das frações e dos decimais, o homem, no decorrer do tempo, precisou de registros para expressar números menores que zero. Foram chamados de números negativos, que, acrescentados ao conjunto dos números naturais, deram origem a um novo conjunto numérico chamado de conjunto dos números inteiros. Atualmente convivemos com situações envolvendo os números negativos, usados, por exemplo, para registrar “queda” ou “perda”. As mais comuns são: • o saldo bancário devedor; • as temperaturas abaixo de zero; • os pontos perdidos no campeonato de futebol. Ao obtermos a porcentagem de acerto na prova, fica mais fácil percebermos a nota correspondente. O primeiro aluno ficará com nota 4 ( quatro) e o outro com nota 7,5 (sete e meio). Usando esses registros, podemos resolver problemas como: Numa cidade da Europa, onde no inverno faz muito frio, o termômetro está marcando – 8° Celsius, ao mesmo tempo em que, em outra localidade nesse país, a temperatura é de – 2° Celsius. Em qual das duas cidades faz mais frio, na que tem temperatura de – 8° Celsius ou na que tem – 2° Celsius? Capítulo III — Convivendo com os números 73 Resolvendo o problema Antes de discutirmos o problema, vamos lembrar como fazemos a leitura de um termômetro. • Um termômetro marca temperaturas abaixo de zero como negativas e acima de zero como positivas! Assim, se está muito frio e a temperatura atingiu 2 graus abaixo de zero, podemos dizer que o termômetro marcou 2 graus negativos, isto é, a temperatura local era de –2° Celsius. Se forem 2 graus acima de zero, dizemos, simplesmente, 2° Celsius. (Celsius é a unidade de temperatura usada no Brasil.) Você pode observar que, quanto mais abaixo de zero estiver a temperatura, mais frio estará fazendo, isto é, – 8º Celsius é uma temperatura menor do que –2º Celsius. Essa comparação entre as temperaturas pode ser escrita em linguagem matemática simbólica. Em Matemática usamos o sinal > para indicar maior e o sinal < para indicar menor. Usando esses sinais podemos escrever: (-2) > (-8) ou (-8) < (-2). Escreva você mais alguns números negativos e compare-os usando os sinais > ou <. Vejamos mais um problema envolvendo temperatura Às 9 horas da manhã, a temperatura estava agradável, fazia 18ºC. Ao meio dia, passou para 20°C e às três horas da tarde, começou a esfriar caindo para 17°C. Durante a noite, esfriou muito e, às 2 horas da madrugada, os termômetros marcavam –2°C. Às 5 horas da manhã, já estava marcando – 4°C (C é a abreviação de Celsius e, ao lermos –2°C, devemos dizer dois graus Celsius negativos). Encontre a maior variação de temperatura ocorrida nesse período. Resolvendo o problema Use os sinais + ou - para registrar as temperaturas observadas durante esse período e encontre a diferença entre a maior e a menor temperatura. 1. As temperaturas positivas:+18, +20, +17. 2. As temperaturas negativas: –2 e –3. 3. A maior temperatura: + 20. 4. A menor temperatura: – 3. 5. Para calcular a diferença entre -3 e 20, podemos pensar que: • de –3 até zero, a diferença é 3. • de 0 até 20, a diferença é 20. ⇒ Então, a diferença entre –3 e 20 é 23 Figura 9 Matemática e suas Tecnologias Ensino Médio 74 Juntar os dois totais: + 2.667,97 – 974,13 = 1.633,84

Números irracionais Você saberia dizer qual dos dois caminhos a formiga faz para chegar ao doce? (a+c) ou b? O professor Luiz Barco, em sua coluna na revista Super Interessante nº 147, afirma que até as formigas escolhem andar pelo maior lado do triângulo retângulo, em vez de percorrer os outros dois. Segundo o prof. Barco, calcular caminhos é uma das várias aplicações práticas do teorema de Pitágoras. Usando este teorema, é possível calcular a menor distância entre dois pontos. Pitágoras, um filósofo que viveu na Grécia aproximadamente 500 anos antes de Cristo, Figura 13 a b c Figura 14 estabeleceu uma relação entre os lados do triângulo retângulo que ficou conhecida como “teorema de Pitágoras”. A descoberta de Pitágoras foi uma revelação para a Matemática, pois surgiram números para os quais não é possível extrair a raiz quadrada exata. O teorema de Pitágoras diz que: “Em um triângulo retângulo, a soma das medidas dos quadrados dos catetos é igual ao quadrado da medida da hipotenusa”. Capítulo III — Convivendo com os números 81 Veja o que ocorre quando aplicamos o teorema de Pitágoras em um triângulo retângulo cujos catetos medem 1m. Escrevemos: x 2 = 12 + 12 x 2 = 1+1 x 2 = 2 x = Ao calcularmos o valor dessa raiz, com o auxílio de um computador, encontramos: =1,4142135623730950488016887242097... Note que os três pontinhos que aparecem depois do último algarismo 7 indicam que podemos continuar calculando essa raiz e ir aumentando infinitamente o número de casas decimais. Outro fato importante para ser observado na representação decimal desse número é que não acontece com ele o mesmo que com outros números racionais que também têm infinitas casas decimais, como, por exemplo, os números 1,33333..., 52,15234234234234... Nesses casos, a partir de um determinado algarismo, há, na parte decimal, regularidade na repetição de algarismos. Veja que para essa regularidade não ocorre. Números como o são chamados de irracionais porque não é possível escrevê-los na forma de uma razão, isto é, na forma fracionária com numerador e denominador inteiros. Existem muitos números irracionais. Veja mais alguns: ; ; 0,10101101111... e o conhecido π, que nos permite calcular a área do círculo e o perímetro da circunferência. Você viu, no decorrer desse capítulo que o conhecimento dos números e suas operações pode ajudá-lo em diferentes situações cotidianas. Existem, ainda, outras situações reais nas quais o conhecimento dos números irracionais pode ajudá-lo e a toda sua comunidade. Os mutirões entre vizinhos, para a construção da casa própria, ocorrem em grande número em diferentes regiões do país. Veja uma possibilidade de usar seu conhecimento dos números para resolver problemas que podem aparecer em construções. Figura 16 Como você faria para calcular aproximadamente a medida da viga lateral da estrutura de um telhado como o da figura acima? Resolvendo o problema Você deve ter encontrado o valor para x. Para obter o valor aproximado, você pode usar uma calculadora ou então considerar que: como 5 é maior que 4, então deve ser maior que ; mas é igual a 2, como 5 é menor que 9, então deve ser menor que ; mas é igual a 3, então é um número que está entre 2 e 3. Como 5 está mais próximo de 4 do que de 9, então deve estar mais próximo de 2 do que de 3. Assim, multiplique 2,1 por 2,1 e, depois, multiplique 2,2 por 2,2; experimente também multiplicar 2,3 por 2,3. Qual dos resultados que você obteve mais se aproxima de 5? Se você achar que é o produto de 2,2 por 2,2, então poderá dizer que é aproximadamente igual a 2,2. Isso quer dizer que a medida da viga é de aproximadamente 2,2 metros, que é o mínimo necessário. Porém, como há alguma perda em cortes, você deve considerar alguns centímetros a mais na hora da compra do material.



ESTUDE AS IMAGENS E FÓRMULAS EM:

http://download.inep.gov.br/educacao_basica/encceja/material_estudo/livro_estudante/encceja_matematica_ens_medio.pdf

ESTUDE CADA TEMA DA MÁTEMÁTICA/ REVISÃO EM:

http://www.gabarite.com.br/material-concurso/64-apostila-completa-de-ensino-medio-para-concursos-gratis





Nenhum comentário:

Postar um comentário

Matemática - Matrizes

Análise Combinatória: Números Complexos: Polinômios: Estatística: (analise dos gráficos e tabelas e responder ás perguntas...